Reaction of caesium 4-chlorophenate and chlorohydrins from threonines: synthesis of clofibrate analogues

Maria Grazia Perrone, ${ }^{\text {a }}$ Ernesto Santandrea, ${ }^{\text {a }}$ Leonardo Di Nunno, ${ }^{\text {a }}$ Antonio Scilimati, ${ }^{\text {a,** }}$ Vincenzo Tortorella, ${ }^{\text {a }}$ Francesco Capitelli ${ }^{\text {b }}$ and Valerio Bertolasi ${ }^{\text {c }}$
${ }^{\text {a }}$ Dipartimento Farmaco-Chimico, Università di Bari, Via E. Orabona 4, 70125 Bari, Italy
${ }^{\mathrm{b}}$ CNR—Istituto di Cristallografia, Via Amendola 122/o-70125 Bari, Italy
${ }^{\text {c }}$ Dipartimento di Chimica e Centro di Strutturistica Diffrattometrica, Università di Ferrara, Via Borsari 46-44100 Ferrara, Italy

Received 13 September 2004; accepted 23 November 2004

Abstract

Clofibrate is a well-known peroxisome proliferator-activated receptor- α (PPAR α) agonist, used in the treatment of hyperlipaemias and atherosclerosis and to prevent heart failure. Herein, the preparation of the four enantiomerically pure stereoisomers of ethyl 2-(4-chlorophenoxy)-3-hydroxybutanoate as clofibrate analogues is described. Biological evaluation of these new compounds was performed by a transactivation assay in a transiently transfected monkey kidney fibroblast cell line. All four diastereomers were inactive even at $300 \mu \mathrm{M}$, where clofibrate showed an evident activity, suggesting that the designed clofibrate molecular structural modifications in the analogues caused the loss of peroxisome proliferator-activated receptor- α (PPAR α) activity. © 2005 Elsevier Ltd. All rights reserved.

1. Introduction

Clofibrate 1 (Fig. 1) and other fibrates are well-known drugs used in the treatment of dyslipidemias, ${ }^{1,2}$ even though clofibrate was withdrawn from the market due to severe adverse side effects. ${ }^{3-13}$ Discovery of peroxisome proliferator-activated receptors, particularly the subtype $\alpha(\operatorname{PPAR} \alpha)$, as the biological target of clofibrate has renewed interest in this class of compounds. ${ }^{2}$ As an attempt to improve the pharmacological profile of clofibrate 1, a lot of new analogues have been synthesized and biologically evaluated. ${ }^{14-26}$

Recently, we reported the synthesis of new racemic ethyl 2-(4-chlorophenoxy)alkanoates 2 (Fig. 1) and their biological activity, evaluated in a transactivation assay, with respect to clofibrate and WY-14,643. However, they were found to be inactive..27 One of the reasons of this behaviour could be that the compounds were assayed by using a mixture of the four possible stereoisomers of each new compound 2 . This prompted us to develop the synthesis of the four stereoisomers of at least the simplest compound of the set $\mathbf{2 a}\left(\mathrm{R}=\mathrm{CH}_{3}\right)$ to separately evaluate their biological activity.

[^0]$(2 R, 3 S)-\mathbf{2 a}$ was prepared with ee $=94 \%$ and 97% respectively by Baker's yeast- and Kluyveromyces marxianusmediated bioreduction of ethyl 2-(4-chlorophenoxy)-3oxobutanoate, the direct precursor of $\mathbf{2 a} . .^{28,29}$ Whereas, $(2 S, 3 S)$-2a was prepared with ee $>99 \%$ by performing the same reaction in the presence of whole cells of Saccharomyces cerevisiae CBS 7336 and Trigonopsis variabilis DSM 70714. ${ }^{29}$ Herein, we describe the chemical asymmetric synthesis of the four stereoisomers of ethyl 2-(4-chlorophenoxy)-3-hydroxybutanoate $\mathbf{2 a}$ and of the corresponding four acids $\mathbf{3}$, whose activity as potential peroxisome proliferators is reported.

2. Results and discussion

As previously described, racemic 2-(4-chlorophenoxy)-3-hydroxybutanoic acid $\mathbf{3}$ was prepared, as a part of a larger study, ${ }^{27}$ by hydrolyzing $\mathbf{2 a}$ obtained by NaBH_{4} reduction of ethyl 2-(4-chlorophenoxy)-3-oxobutanoate. This in turn was prepared by reacting caesium 4-chlorophenate and ethyl 2-chloro-3-oxobutanoate.

As far as the synthesis of the four optically active 2-(4-chlorophenoxy)-3-hydroxybutanoic acids 3 is concerned, $(2 R, 3 S)$-D- and $(2 S, 3 R)$-L-threonine and, $(2 R, 3 R)$-D- and $(2 S, 3 S)$-L-allothreonine were chosen as the starting materials (Fig. 2 and Scheme 1).

1

2
2

WY-14,643

Compd	R
2a	CH_{3}
2b	$\mathrm{C}_{2} \mathrm{H}_{5}$
2c	$n-\mathrm{C}_{3} \mathrm{H}_{7}$
2d	$i-\mathrm{C}_{3} \mathrm{H}_{7}$
2e	$t-\mathrm{C}_{4} \mathrm{H}_{9}$
2f	$\mathrm{C}_{6} \mathrm{H}_{5}$

Figure 1. Structure of clofibrate $\mathbf{1}$ and its analogues 2a-f and PPAR α-ligand WY-14,643.

As expected, in all cases, preliminary conversion to the corresponding 2-chloro-derivatives with retention of configuration is observed. ${ }^{30}$ Nucleophilic displacement of dinitrogen from diazotized α-amino acids by chloride ${ }^{31}$ is known to proceed with retention of configuration ${ }^{30,32,33}$ through anchimeric assistance by carboxylic group, via a (protonated) α-lactone, ${ }^{34}$ and, in the case of threonines, with participation also of the hydroxy group as a neighbouring group, giving rise to the intermediate formation of a (protonated) epoxide. ${ }^{35-37}$

The expected products were also obtained by transforming 2 -chloro- 3 -hydroxybutanoic acids 4 into the corresponding ethyl 2 -chloro-3-hydroxybutanoates 5 .

However, noteworthy and partially unexpected results were instead obtained in the subsequent conversion of chloro- to 4-chlorophenoxy-derivatives. Reaction of
chloro-derivatives $\mathbf{5}$ with 4-chlorophenoxide ion, in fact, is not a direct nucleophilic substitution of chloride.

Formation in all cases (Scheme 2 and 3 and Table 1), together with the expected 2-(4-chlorophenoxy)-derivative 2a, also of the structural isomer 6 (in a constant ratio 1:4) indicates, in fact, a preliminary intramolecular reaction of the starting chlorohydrin 5 affording an epoxide intermediate 7. Subsequent reaction of the epoxide generates $\mathbf{2 a}$ and $\mathbf{6}$, as observed.

In addition, the absolute configurations at C_{2} and C_{3} of $\mathbf{2 a}$ and $\mathbf{6}$ formed from each chloro-derivative, definitively established in the case of $(2 S, 3 S)-\mathbf{- a}$ and $(2 R, 3 R)$-2a by X-ray analysis of the corresponding acids 3 (Figs. 3 and 4) ${ }^{38-42}$ indicate a trans geometry of the epoxides [($2 R, 3 S$)-7 or $(2 S, 3 R)-7]$. In particular, ($2 R, 3 S$)-epoxide 7 should be formed from both

Figure 2. Retrosynthesis of 2-(4-chlorophenoxy)-3-hydroxybutanoic acid 3 starting from threonines.

Scheme 1. Reagents and conditions: (i) $\mathrm{NaNO}_{2}, \mathrm{HCl},-15^{\circ} \mathrm{C}$; (ii) $\mathrm{EtI}, \mathrm{NaHCO}_{3}$, anhydrous DMF, rt; (iii) caesium 4-chlorophenate, $50{ }^{\circ} \mathrm{C}$; (iv) $\mathrm{KOH}, \mathrm{THF} / \mathrm{H}_{2} \mathrm{O}$, rt.

Scheme 2. Transformation of D-threonine [or L-threonine] into the chlorohydrin, and its reaction with caesium 4-chlorophenate.

Scheme 3. Transformation of L-allothreonine [or D-allothreonine] into the chlorohydrin, and its reaction with caesium 4-chlorophenate.
$(2 R, 3 S)$ - and $(2 S, 3 S)$-chlorohydrin 5, while $(2 S, 3 R)$ epoxide 7 should originate from both $(2 S, 3 R)$ - and $(2 S, 3 S)$-stereoisomers 5.

It should be noticed that, only in the case of the chlorohydrins deriving from $(2 R, 3 S)$-d- and $(2 S, 3 R)$-L-threonine, small amounts (up to 12%) of cis $(2 S, 3 S)-7$ and

Table 1. Summary of the results of the reactions of chlorohydrins and caesium 4-chlorophenate (Schemes 2 and 3)

Threonine	Chlorohydrin [4 (acid), 5 (ethyl ester)]	2a	6	7
($2 R, 3 S$)-d-Threonine	$(2 R, 3 S)$	$\begin{aligned} & (2 S, 3 S) /(2 R, 3 S), \mathrm{dr}=89: 11^{\mathrm{a}} \\ & (2 R, 3 R) /(2 S, 3 R), \mathrm{de}=78 \%^{\mathrm{a}} \\ & \mathrm{Ee}_{(2 S, 3 S) /(2 R, 3 R)}=99 \%^{\mathrm{b}} \\ & \mathrm{Ee}_{(2 R, 3 S) /(2 S, 3 R)}=97 \%^{\mathrm{b}} \\ & 34 \%^{\mathrm{c}} \end{aligned}$	$\begin{aligned} & (2 R, 3 R) /(2 S, 3 R), \mathrm{dr}=58: 42^{\mathrm{a}} \\ & (2 S, 3 S) /(2 R, 3 S), \mathrm{de}=16 \%^{\mathrm{a}} \\ & \mathrm{Ee}_{(2 R, 3 R) /(2 S, 3 S)}=99 \%^{\mathrm{b}} \\ & \mathrm{Ee}_{(2 S, 3 R) /(2 R, 3 S)}=97 \%^{\mathrm{b}} \\ & 23 \%^{\mathrm{c}} \end{aligned}$	$\begin{aligned} & (2 S, 3 S)^{\mathrm{d}} /(2 R, 3 S),{ }^{\mathrm{d}} \mathrm{dr}=50: 50 \\ & (2 R, 3 R) /(2 S, 3 R) \\ & \text { ND } \\ & \text { ND } \\ & 30 \%^{\mathrm{c}} \end{aligned}$
(2S,3S)-L-Allothreonine	$(2 S, 3 S)$	$\begin{aligned} & (2 S, 3 S) /(2 R, 3 S), \mathrm{dr}>99: 1^{\mathrm{a}} \\ & (2 R, 3 R) /(2 S, 3 R), \mathrm{de}>99 \%^{\mathrm{a}} \\ & \mathrm{Ee}_{(2 S, 3 S) /(2 R, 3 R)}>99 \%^{\mathrm{b}} \\ & 25 \%^{\mathrm{e}} \end{aligned}$	$\begin{aligned} & (2 R, 3 R) /(2 S, 3 R), \mathrm{dr}>99: 1^{\mathrm{a}} \\ & (2 S, 3 S) /(2 R, 3 S), \mathrm{de}>99 \%^{\mathrm{a}} \\ & \mathrm{Ee}_{(2 R, 3 R) /(2 S, 3 S)}>99 \%^{\mathrm{b}} \\ & 24 \%^{\mathrm{e}} \end{aligned}$	$\begin{aligned} & (2 R, 3 S) /(2 S, 3 S), \mathrm{dr}>99: 1 \\ & (2 S, 3 R) /(2 R, 3 R), \mathrm{de}>99 \% \\ & \mathrm{Ee}_{(2 R, 3 S) /(2 S, 3 R)}>9 \%^{\mathrm{b}} \\ & 41 \%^{\mathrm{e}} \end{aligned}$
($2 S, 3 R$)-L-Threonine	($2 S, 3 R$)	$\begin{aligned} & (2 R, 3 R) /(2 S, 3 R), \mathrm{dr}=88: 12^{\mathrm{a}} \\ & (2 S, 3 S) /(2 R, 3 S), \mathrm{de}=77 \%^{\mathrm{a}} \\ & \mathrm{Ee}_{(2 R, 3 R) /(2 S, 3 S)}>99^{\mathrm{b}} \\ & \mathrm{Ee}_{(2 S, 3 R) /(2 R, 3 S)}>9 \%^{\mathrm{b}} \\ & 44 \%^{\mathrm{f}} \end{aligned}$	$\begin{aligned} & (2 S, 3 S) /(2 R, 3 S), \mathrm{dr}=57: 43^{\mathrm{a}} \\ & (2 R, 3 R) /(2 S, 3 R), \mathrm{de}=14 \%^{\mathrm{a}} \\ & \mathrm{Ee}_{(2 S, 3 S) /(2 R, 3 R)}=97 \%^{\mathrm{b}} \\ & \mathrm{Ee}_{(2 R, 3 S) /(2 S, 3 R)}>99 \%^{\mathrm{b}} \\ & 35 \%^{\mathrm{f}} \end{aligned}$	$\begin{aligned} & (2 S, 3 R) /(2 R, 3 R),{ }^{\mathrm{d}} \mathrm{dr}=54: 46 \\ & (2 R, 3 S) /(2 S, 3 S), \mathrm{de}=8 \% \\ & \text { ND } \\ & \text { ND } \\ & 13 \%^{\mathrm{f}} \end{aligned}$
($2 R, 3 R$)-d-Allothreonine	$(2 R, 3 R)$	$\begin{aligned} & (2 R, 3 R) /(2 R, 3 S), \mathrm{dr}>99: 1^{\mathrm{a}} \\ & (2 S, 3 S) /(2 S, 3 R), \mathrm{de}>99 \%^{\mathrm{a}} \\ & \mathrm{Ee}_{(2 R, 3 R) /(2 S, 3 S)}>99 \%^{\mathrm{b}} \\ & 32^{\mathrm{g}} \end{aligned}$	$\begin{aligned} & (2 S, 3 S) /(2 S, 3 R), \mathrm{dr}>99: 1^{\mathrm{a}} \\ & (2 R, 3 R) /(2 R, 3 S), \mathrm{de}>99 \%^{\mathrm{a}} \\ & \mathrm{Ee}_{(2 S, 3 S) /(2 R, 3 R)}>99 \%^{\mathrm{b}} \\ & 26 \%^{\mathrm{g}} \end{aligned}$	$\begin{aligned} & (2 S, 3 R) /(2 S, 3 S), \mathrm{dr}>99: 1^{\mathrm{a}} \\ & (2 R, 3 S) /(2 R, 3 R), \mathrm{de}>99 \% 0^{\mathrm{a}} \\ & \mathrm{Ee}_{(2 S, 3 R) /(2 R, 3 S)}>99 \%^{\mathrm{b}} \\ & 41 \%^{\mathrm{g}} \end{aligned}$

${ }^{\text {a }}$ Diastereomeric ratio and excess (dr , de) were determined by ${ }^{1} \mathrm{H}$ NMR.
${ }^{\mathrm{b}}$ Enantiomeric excesses (ee) were determined by HPLC.
${ }^{c}$ Percentage of product in the reaction crude determined by GC-mass quantitative analysis. Remaining unreacted chlorohydrin was 21%.
${ }^{\mathrm{d}}$ Predominant enantiomer.
${ }^{\mathrm{e}}$ Percentage of product in the reaction crude determined by GC-mass quantitative analysis. Remaining unreacted chlorohydrin was 2%.
${ }^{\mathrm{f}}$ Percentage of product in the reaction crude determined by GC-mass quantitative analysis. Remaining unreacted chlorohydrin was 8%.
${ }^{\mathrm{g}}$ Percentage of product in the reaction crude determined by GC-mass quantitative analysis. Remaining unreacted chlorohydrin was 1%.

Figure 3. ORTEP view of the asymmetric unit with the atomic numbering scheme of ($2 S, 3 S$)-2-(4-chlorophenoxy)-3-hydroxybutanoic acid 3. Thermal ellipsoids probability level at 30%.
cis $(2 R, 3 R)-7$, respectively, were formed. In the presence of 4-chlorophenoxide ion, these were converted into $(2 R, 3 S)-\mathbf{2 a}$ and $(2 S, 3 R)-6$ in the case of $(2 S, 3 S)-7$, or $(2 S, 3 R)-2 \mathrm{a}$ and $(2 R, 3 S)-6$ in the case of $(2 R, 3 R)-7$ (Scheme 2 and Table 1).

The above conclusions are confirmed by separately reacting $(2 R, 3 S)-7$, prepared according to Akita's procedure, ${ }^{36}$ and the commercially available $(2 S, 3 S)-7$ and $(2 R, 3 R)-7$, and isolating both $\mathbf{2 a}$ and $\mathbf{6}$ with the expected absolute configurations and same ratio (Schemes 4 and 5).

Figure 4. ORTEP view of the asymmetric unit with the atomic numbering scheme of $(2 R, 3 R)$-2-(4-chlorophenoxy)-3-hydroxybutanoic acid 3. Thermal ellipsoids probability level at 30%.

On the other hand, formation of the same epoxide from two different chloro-derivatives $[(2 R, 3 S)-5$ and $(2 S, 3 S)-5$, or $(2 S, 3 R)-5$ and $(2 R, 3 R)-5]$ deserves some comment. Formation of the epoxide by intramolecular reaction of adjacent hydroxy group should in fact take place with inversion of configuration at C_{2}, as the reaction presumably follows an $\mathrm{S}_{\mathrm{N}} 2$ mechanism. Thus, while the trans-epoxide is the expected result in the case of $(2 S, 3 S)$ - and $(2 R, 3 R)$-chloro-derivative, the same result seems to be anomalous for both $(2 R, 3 S)-5$ and $(2 S, 3 R)-5$, for which a retention of configuration at C_{2} carbon should instead take place (Schemes 2 and 3). A possible explanation could once again be found

Scheme 4. Reaction of trans-epoxide 7 with 4-chlorophenol.

Scheme 5. Reaction of cis-epoxide ($2 S, 3 S$)-7 [or $(2 R, 3 R)-7]$ with 4-chlorophenol.
in the anchimeric assistance by the adjacent carbethoxy group, similar to that above mentioned as responsible for C_{2} retention of configuration in conversion of aminoacids into 2 -chloro-derivatives $4,{ }^{32}$ and hence 5 , only in the case of $(2 R, 3 S)-5$ and $(2 S, 3 R)-5$, and could possibly be caused by the formation of the more stable trans-epoxides.

It must be pointed out, however, that the anchimerically assisted reaction although prevailing, is not the only one observed in the latter cases. Some unassisted epoxide formation (cis-epoxide) may in fact also compete, as revealed by formation in minor amounts of different stereoisomers 2a and 6.

Finally, acids 3, obtained in quantitative yields by reacting 2a with KOH (Scheme 1), were biologically evaluated by using a transactivated assay in eukaryotic cells, transiently expressing the fusion protein between the yeast GAL4 transactivation factor DNA-binding domain (DBD) and murine PPAR α-ligand-binding domain (LBD), to establish their ability to activate PPAR α. They were compared to WY-14,643 and clofibrate, ${ }^{27}$ however they proved inactive. This could be ascribed either to the
presence of the hydroxy group which probably does not allow suitable interactions between the compounds and the receptor LBD , or to the higher size of the moiety linked to the C_{2} of 3 than the two hydrogens of WY14,643 and the two methyls of clofibrate.

3. Conclusion

The results reported above support the proposed mechanism, that the reaction between chlorohydrins and caesium 4-chlorophenate occurs through the epoxideintermediate 7. In particular, $(2 S, 3 S)$ - $\mathbf{2 a}$ is formed starting from both D -threonine and L -allothreonine via the common intermediate ethyl $(2 R, 3 S)$-3-methyloxirane2 -carboxylate 7. On the other hand, $(2 R, 3 R)$ - $\mathbf{2 a}$ is obtained from both L-threonine and D -allothreonine, via ethyl $(2 S, 3 R)$-3-methyloxirane-2-carboxylate as the common epoxide intermediate. Unfortunately, acids 3, obtained in quantitative yields on treating 2a with KOH , proved inactive towards mouse PPAR α. However, it is worth noting that the reported data do not exclude the possibility that they could be endowed with antagonist activity.

4. Experimental

4.1. General methods

Melting points were taken on an electrothermal apparatus and are uncorrected. Reaction progress was monitored by GC analysis. Column chromatography was conducted using silica gel Merck 60 (0.0400.063 mm).

GC analyses were performed by using a HP-5MS column (5% phenyl methyl siloxane; $30 \mathrm{~m} \times 0.321 \mathrm{~mm} \times$ $0.25 \mu \mathrm{~m}$) on an Agilent 6850 Series GC System. GCMS analyses were performed on a Hewlett-Packard 6890-5793MSD. LC-MS spectra were recorded by direct infusion of their solution ($c=0.01 \mathrm{mg} / \mathrm{mL}$) in methanol/ 5 mM aq ammonium formate $=9: 1$ in a LC - MSD trap; MS-MS spectra are also reported.
${ }^{1} \mathrm{H}$ NMR spectra were recorded in CDCl_{3} or $\mathrm{CD}_{3} \mathrm{OD}$ on a Varian Mercury 300 MHz or Bruker Aspect 500 MHz spectrometer and chemical shifts are reported in parts per million (δ). Absolute values of the coupling constants (J) in hertz are reported. IR spectra were recorded on a Perkin-Elmer 681 spectrometer.

Ee values of the reaction products $2 \mathbf{a}$ and $\mathbf{6}$ were determined by HPLC analysis performed on a Perkin-Elmer 200 series with a UV/vis detector 785A by the commercially available Chiralcel OD (Daicel) in isocratic conditions employing n-hexane-2-propanol $=98: 2$, flow rate $=1 \mathrm{~mL} / \mathrm{min}$ and $\lambda=230 \mathrm{~nm}$. Racemic 2a and 6 were used as reference compounds for the HPLC analysis. Their chromatograms are shown in Figures 5 and 6.

Absolute configurations of $(2 S, 3 S)-3$ and $(2 R, 3 R)-3$ were established by single crystal X-ray analyses. As far as $(2 R, 3 S)$ - $\mathbf{3}$ absolute configuration by X-ray analysis is concerned, crystallographic data have been already
reported. ${ }^{29}$ Absolute configuration of $(2 S, 3 R)-3$ was assigned by HPLC under the conditions used to determine the ee values. Optical rotations were measured on a Perkin-Elmer polarimeter.

4.2. Materials

D-Allo- and L-allo-threonine were from Bachem Chemicals, CH. Ethyl ($2 S, 3 S$)-3-methyloxirane-2-carboxylate and ethyl $(2 R, 3 R)$-3-methyloxirane-2-carboxylate were from Acros Organics BE. D- and L-Threonine and all other chemicals and solvents were from Aldrich Chemical Co. Hydrochloric acid was obtained by distillation (bp $=108-109^{\circ} \mathrm{C}$) of a $50 \mathrm{vol} \%$ aqueous solution of 37% hydrochloric acid. Anhydrous N, N-dimethylformamide was distilled from calcium hydride, under nitrogen atmosphere, immediately prior to use. EtI was distilled immediately prior to use.
4.2.1. Preparation of 2-chloro-3-hydroxybutanoic acid 4: general procedure. To a solution of threonine (209.9 mmol) in hydrochloric acid $(262 \mathrm{~mL}$) cooled at $-15^{\circ} \mathrm{C}, \mathrm{NaNO}_{2}(335.8 \mathrm{mmol})$ was carefully added in small aliquots. The reaction was stirred for 5 h at $-15^{\circ} \mathrm{C}$. Then, the reaction mixture was extracted three times with ethyl acetate. The combined extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was evaporated under reduced pressure. A yellow oil was obtained.
4.2.1.1. (2S,3R)-4. ${ }^{\mathbf{3 0 , 3 7}}$ Yield $57 \% ;[\alpha]_{\mathrm{D}}^{20}=-8.3(c$ $1.0, \mathrm{CHCl}_{3}$). IR (neat): $3600-2500,2985,1733,1635$, 1381, 1288, 1194, 1126, 1090, 1037, 948, 863, 815, $703 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.40-5.80$ (br s, $2 \mathrm{H}, \mathrm{OH}$ and COOH : exchange with $\mathrm{D}_{2} \mathrm{O}$); 4.424.35 (qd partially overlapped to a d, $J=6.32$ and $3.71 \mathrm{~Hz}, \quad 2 \mathrm{H}, \quad \mathrm{CHOH}$ and CHCl$) ; 1.37-1.35$ (d, $\left.J=6.32 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR $\left(76 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $172.22(1 \mathrm{C}, \mathrm{COOH}) ; 68.63(1 \mathrm{C}, \mathrm{CHOH}) ; 63.16(1 \mathrm{C}$,

Figure 5. HPLC chromatogram of racemic ethyl 2-(4-chlorophenoxy)-3-hydroxybutanoate 2a.

Figure 6. HPLC chromatogram of racemic ethyl 3-(4-chlorophenoxy)-2-hydroxybutanoate 6.
$C \mathrm{HCl}) ; 19.87\left(1 \mathrm{C}, \mathrm{CH}_{3}\right)$. LC-MS (m / z) (rel. int.): 139 $\left[\mathrm{M}\left({ }^{37} \mathrm{Cl}\right)^{-}, 16\right], 137\left[\mathrm{M}\left({ }^{35} \mathrm{Cl}\right)^{-}, 41\right]$. MS-MS (137) $(\mathrm{m} / \mathrm{z})$ (rel. int.): 101 (100), 83 (9), 57 (47).
4.2.1.2. (2R,3S)-4. ${ }^{\mathbf{3 0 , 3 7}}$ Yield $47 \% ;[\alpha]_{\mathrm{D}}^{20}=+8.5 \quad(c$ $\left.1.0, \mathrm{CHCl}_{3}\right)$. Analytical and spectroscopic data were identical to those ones of its enantiomer $(2 S, 3 R)-4$.
4.2.1.3. $(\mathbf{2 S}, \mathbf{3 S})-4 .{ }^{\mathbf{3 0 , 3 7}}$ Yield $87 \% ;[\alpha]_{\mathrm{D}}^{20}=+4.3$ (c $1.0, \mathrm{CHCl}_{3}$). IR (neat): 3600-2400, 2986, 1732, 1669, 1381, 1299, 1195, 1122, 1091, 1045, 953, 880, 822, $696 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.03-7.70$ (br s, $2 \mathrm{H}, \mathrm{OH}$ and COOH : exchange with $\mathrm{D}_{2} \mathrm{O}$); 4.31$4.20(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CHOH}$ and CHCl$) ; 1.37-1.35$ (d, $\left.J=5.82 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR ($76 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $173.40(1 \mathrm{C}, \mathrm{COOH}) ; 69.64(1 \mathrm{C}, \mathrm{CHOH}) ; 61.49(1 \mathrm{C}$, $C \mathrm{HCl}) ; 19.08\left(1 \mathrm{C}, \mathrm{CH}_{3}\right)$.
4.2.1.4. (2R,3R)-4. ${ }^{30,37}$ Yield $62 \% ;[\alpha]_{\mathrm{D}}^{20}=-4.0(c$ $\left.1.0, \mathrm{CHCl}_{3}\right)$. Analytical and spectroscopic data were identical to those ones of its enantiomer $(2 S, 3 S)-\mathbf{4}$.

4.2.2. Preparation of ethyl 2-chloro-3-hydroxybutanoate 5: general procedure. ${ }^{37}$ To a solution of 4

 (116.4 mmol) in anhydrous N, N-dimethylformamide $(104 \mathrm{~mL}), \mathrm{NaHCO}_{3}(232.8 \mathrm{mmol})$ was added under a nitrogen stream. The reaction was stirred at room temperature for 10 min . A solution of iodoethane (232.8 mmol) in anhydrous N, N-dimethylformamide $(104 \mathrm{~mL})$ was dropwise added. The reaction was stirred for 22 h at room temperature. Then, water was added and the reaction mixture extracted three times with ethylacetate. The combined extracts were washed with a solution of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$, a saturated solution of NaHCO_{3} and with brine. The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent evaporated under reduced pressure. A yellow oil was obtained.
4.2.2.1. (2S,3R)-5. ${ }^{36} \quad$ Yield $57 \% ; \quad[\alpha]_{\mathrm{D}}^{20}=-14.2 \quad(c$ $1.0, \mathrm{CHCl}_{3}$). IR (neat): $3600-3200,2984,2939,2904$, 1744, 1448, 1373, 1301, 1183, 1127, 1095, 1024, 944, $878,850 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 4.28-$ 4.15 (m, 4H, $\mathrm{CHOH}, \mathrm{CHCl}$ and $\mathrm{CH}_{2} \mathrm{O}$); 2.80-2.65 (br $\mathrm{s}, 1 \mathrm{H}, \mathrm{OH}$: exchanges with $\left.\mathrm{D}_{2} \mathrm{O}\right) ; 1.31-1.26(\mathrm{~m}$, formed from a triplet and a doublet, $J=7.14$ and $6.18 \mathrm{~Hz}, 6 \mathrm{H}$, $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}$ and CH CHOH). ${ }^{13} \mathrm{C}$ NMR (76 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 168.78(1 \mathrm{C}, \mathrm{CO}) ; 68.63(1 \mathrm{C}, \mathrm{CHOH}) ; 63.39$ $(1 \mathrm{C}, \quad \mathrm{CHCl}) ; 62.64\left(1 \mathrm{C}, \quad \mathrm{CH}_{2} \mathrm{CH}_{3}\right) ; 19.88(1 \mathrm{C}$, $\left.\mathrm{CH}_{3} \mathrm{CHOH}\right) ; 14.35\left(1 \mathrm{C}, \mathrm{CH}_{3} \mathrm{CH}_{2}\right) . \mathrm{GC}-\mathrm{MS}(70 \mathrm{eV})$ (m / z) (rel. int.): $151\left(\mathrm{M}^{+}-15,2\right), 124$ (25), 123 (12), 122 (70), 96 (38), 94 (100), 85 (17), 78 (12), 76 (31), 45 (29), 43 (12).
4.2.2.2. (2R,3S)-5. ${ }^{36}$ Yield $65 \% ;[\alpha]_{\mathrm{D}}^{20}=+14.0 \quad(c$ $1.0, \mathrm{CHCl}_{3}$). Analytical and spectroscopic data were identical to those of its enantiomer $(2 S, 3 R)-5$.
4.2.2.3. (2S,3S)-5. ${ }^{36} \quad$ Yield $64 \% ;[\alpha]_{\mathrm{D}}^{20}=+4.8$ (c 1.1, CHCl_{3}). IR (neat): 3600-3200, 2984, 2939, 2909, 2878, 1741, 1448, 1395, 1373, 1304, 1277, 1216, 1182, 1095, 1024, $953,882 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 4.27-4.18 (m, $4 \mathrm{H} \mathrm{CH}_{2} \mathrm{O}, \mathrm{CHOH}$ and CHCl$) ; 3.18-$ 2.99 (br s, $1 \mathrm{H}, \mathrm{OH}$: exchanges with $\mathrm{D}_{2} \mathrm{O}$); 1.32-1.25 $\left(\mathrm{m}, \quad 6 \mathrm{H}, \quad \mathrm{CH}_{3} \mathrm{CHOH}\right.$ and $\left.\mathrm{CH}_{3} \mathrm{CH}_{2}\right) .{ }^{13} \mathrm{C}$ NMR
($76 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 168.92$ ($1 \mathrm{C}, \mathrm{CO}$); 69.10 (1 C , $C \mathrm{HOH}) ; 62.47(1 \mathrm{C}, \mathrm{CHCl}) ; 61.26\left(1 \mathrm{C}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$; 19.35 ($1 \mathrm{C}, \mathrm{CH}_{3} \mathrm{CHOH}$); 14.18 ($1 \mathrm{C}, \mathrm{CH}_{3} \mathrm{CH}_{2}$). GC-MS $(70 \mathrm{eV})(\mathrm{m} / \mathrm{z})\left(\right.$ rel. int.): $151\left(\mathrm{M}^{+}-15,2\right), 124$ (19), 122 (56), 96 (33), 94 (100), 85 (17), 78 (10), 76 (28), 45 (32), 43 (12).
4.2.2.4. (2R,3R)-5. ${ }^{36}$ Yield 75\%; $[\alpha]_{\mathrm{D}}^{20}=-4.9$ (c 1.2, CHCl_{3}). Analytical and spectroscopic data were identical to those ones of its enantiomer $(2 S, 3 S)-5$.
4.2.3. Preparation of ethyl 2-(4-chlorophenoxy)-3hydroxybutanoate 2a: general procedure. A mixture of $5(51.9 \mathrm{mmol})$ and caesium 4-chlorophenate (57.1 mmol) was stirred at $50^{\circ} \mathrm{C}$ for 5 days, monitoring the reaction progress by GC analysis. Water was added and the reaction mixture extracted three times with ethyl acetate. The combined extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was evaporated under reduced pressure. A red oil was obtained. Products were separated by flash chromatography (silica gel; mobile phase: petroleum ether/ethyl acetate $=8: 2$).
4.2.3.1. (2R,3R)-2a. Yield 5\%; $[\alpha]_{\mathrm{D}}^{20}=+29.0$ (c 1.1, CHCl_{3}. $\mathrm{Dr}=88: 12$, de $=77 \%$, ee $>99 \%$. IR (neat): 3700-3100, 3050, 2984, 2939, 1737, 1659, 1596, 1584, 1492, 1447, 1375, 1281, 1238, 1201, 1095, 1063, 1023, $826 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.23-7.17$ $(\mathrm{m}, 2 \mathrm{H}$, aromatic protons); 6.84-6.79 $(\mathrm{m}, 2 \mathrm{H}$, aromatic protons); 4.55-4.53 (d, $J=4.39 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHOC}_{6} \mathrm{H}_{4} \mathrm{Cl}$); 4.32-4.17 (qd, $J=6.59$ and $4.39 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHOH}$, partially overlapped to a quartet of doublets, $J=7.14$ and $1.38 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}$); 3.80-3.00 (br s, $1 \mathrm{H}, \mathrm{OH}$: exchanges with $\mathrm{D}_{2} \mathrm{O}$); 1.34-1.32 (d, $J=6.59 \mathrm{~Hz}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3} \mathrm{CHOH}\right) ; 1.24-1.20\left(\mathrm{t}, \mathrm{J}=7.14 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2}\right.$). ${ }^{13} \mathrm{C}$ NMR ($76 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 169.59(1 \mathrm{C}, \mathrm{CO})$; 156.48 (1C, aromatic carbon); 129.68 (2 C , aromatic carbons); 127.13 (1 C , aromatic carbon); 116.91 (2C, aromatic carbons); $81.12\left(1 \mathrm{C}, \mathrm{CHOC}_{6} \mathrm{H}_{4} \mathrm{Cl}\right) 68.57(1 \mathrm{C}$, $C \mathrm{HOH}) ; 61.86\left(1 \mathrm{C}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right) ; 18.58\left(1 \mathrm{C}, \mathrm{CH}_{3} \mathrm{CHOH}\right)$; $14.33\left(1 \mathrm{C}, \mathrm{CH}_{3} \mathrm{CH}_{2}\right) . \mathrm{GC}-\mathrm{MS}(70 \mathrm{eV})(\mathrm{m} / \mathrm{z})$ (rel. int.): $\left.260\left[\mathrm{M}^{37}{ }^{7} \mathrm{Cl}\right)^{+}, 7\right], 258\left[\mathrm{M}\left({ }^{35} \mathrm{Cl}\right)^{+}, 19\right], 216$ (10), 214 (20), 168 (10), 167 (11), 143 (32), 142 (10), 141 (100), 139 (16), 130 (18), 129 (10), 128 (52), 111 (11), 99 (10), 75 (11), 45 (10), 43 (11).
4.2.3.2. (2S,3R)-2a. $\quad[\alpha]_{\mathrm{D}}^{20}=-36.0$ (c 1.4, CHCl_{3}). $\mathrm{Ee}>99 \%$. IR (neat): $3600-3200,3056,2985,2932$, 2855, 1748, 1596, 1491, 1376, 1266, 1236, 1199, 1137, 1095, 1076, 1025, 1009, 826, $738 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.25-7.20(\mathrm{~m}, 2 \mathrm{H}$, aromatic protons); 6.86-6.83 (m, 2H, aromatic protons); 4.43-4.42 (d, J=4.94 Hz, $1 \mathrm{H}, \quad \mathrm{CHOC} 6_{6} \mathrm{H}_{4} \mathrm{Cl}$); 4.32-4.17 (qd, $J=7.15$ and $1.64 \mathrm{~Hz}, 2 \mathrm{H}$ of $\mathrm{CH}_{2} \mathrm{CH}_{3}$ completely overlapped to the signal of CHOH); 2.60-2.20 (br s, 1 H , OH : exchanges with $\mathrm{D}_{2} \mathrm{O}$); 1.35-1.34 (d, $J=6.45 \mathrm{~Hz}$, $\left.3 \mathrm{H}, \quad \mathrm{C} H_{3} \mathrm{CHOH}\right) ; \quad 1.27-1.24 \quad(\mathrm{t}, \quad J=7.15 \mathrm{~Hz}, \quad 3 \mathrm{H}$, $\mathrm{CH}_{3} \mathrm{CH}_{2}$) ${ }^{13} \mathrm{C}$ NMR ($76 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 169.74(1 \mathrm{C}$, CO); 156.44 (1 C , aromatic carbon); 129.68 (2 C , aromatic carbons); 127.13 (1 C , aromatic carbon); 116.91 (2C, aromatic carbons); $81.12\left(1 \mathrm{C}, \mathrm{CHOC}_{6} \mathrm{H}_{4} \mathrm{Cl}\right) 68.57$ $(1 \mathrm{C}, ~ C H O H) ; 61.86\left(1 \mathrm{C}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right) ; 18.58(1 \mathrm{C}$, $\left.\mathrm{CH}_{3} \mathrm{CHOH}\right) ; 14.33\left(1 \mathrm{C}, \mathrm{CH}_{3} \mathrm{CH}_{2}\right) . \mathrm{GC}-\mathrm{MS}(70 \mathrm{eV})$
$(\mathrm{m} / \mathrm{z})$ (rel. int.): $260\left[\mathrm{M}\left({ }^{37} \mathrm{Cl}\right)^{+}, 6\right], 258\left[\mathrm{M}\left({ }^{35} \mathrm{Cl}\right)^{+}, 19\right]$, 214 (19), 168 (9), 167 (8), 143 (32), 142 (8), 141 (100), 139 (15), 130 (16), 129 (10), 128 (49), 111 (10), 99 (7), 75 (10), 45 (7), 43 (9).
4.2.3.3. (2S,3S)-2a. Yield 5\%; $[\alpha]_{\mathrm{D}}^{20}=-29.0$ (c 1.1 $\left.\mathrm{CHCl}_{3}\right) . \mathrm{Dr}=89: 11$, de $=78 \%$, ee $=99 \%$. Analytical and spectroscopic data were identical to those of its enantiomer $(2 R, 3 R)-\mathbf{2 a}$.
4.2.3.4. (2R,3S)-2a. $[\alpha]_{\mathrm{D}}^{20}=+36.5$ (c $\left.1.4, \mathrm{CHCl}_{3}\right)$. $\mathrm{Ee}=97 \%$. Analytical and spectroscopic data were identical to those of its enantiomer ($2 S, 3 R$)-2a.
4.2.4. Preparation of ethyl 3-(4-chlorophenoxy)-2hydroxybutanoate 6: general procedure. A mixture of 7 (3.86 mmol), 4-chlorophenol (3.86 mmol) and caesium 4-chlorophenate (0.39 mmol) was stirred at $50^{\circ} \mathrm{C}$ for 5 days. Reaction progress was monitored by GC analysis. Then, water was added and the reaction mixture extracted three times with ethyl acetate. The extracts were combined and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was evaporated under reduced pressure and a colourless oil was obtained. Products were isolated by flash chromatography (silica gel; mobile phase: petroleum ether/ethyl acetate $=8: 2$).
4.2.4.1. (2S,3R)-6. $\quad[\alpha]_{\mathrm{D}}^{20}=+20.9$ (c 1.0, CHCl_{3}). White solid, $\mathrm{mp} 47-50^{\circ} \mathrm{C}$. De $>99 \%$, ee $>99 \%$. IR (KBr): 3750-3250, 3030, 2985, 2936, 1740, 1594, 1580, 1491, 1409, 1393, 1378, 1281, 1241, 1157, 1120, 1092, 1062, 1008, 968, 882, 867, 823, $648 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.23-7.18(\mathrm{~m}, 2 \mathrm{H}$, aromatic protons); 6.84-6.79 ($\mathrm{m}, 2 \mathrm{H}$, aromatic protons); 4.73-4.66 (qd, $J=6.33$ and $2.20 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} H \mathrm{CH}_{3}$); 4.19-4.12 (m, $3 \mathrm{H}, \mathrm{CHOH}$ and $\mathrm{CH}_{2} \mathrm{CH}_{3}$); 3.20-3.00 (br s, $1 \mathrm{H}, \mathrm{OH}$: exchanges with $\mathrm{D}_{2} \mathrm{O}$); 1.42-1.40 (d, $J=6.33 \mathrm{~Hz}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3} \mathrm{CH}\right) ; 1.17-1.12\left(\mathrm{t}, J=7.15 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2}\right) .{ }^{13} \mathrm{C}$ NMR ($76 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 172.59(1 \mathrm{C}, \mathrm{CO}) ; 156.23$ (1C, aromatic carbon); 129.65 (2C, aromatic carbons); 126.58 (1 C , aromatic carbon); 117.73 (2C, aromatic carbons); 75.76 ($1 \mathrm{C}, \mathrm{CHCH}_{3}$); 73.88 ($1 \mathrm{C}, \mathrm{CHOH}$); 62.19 $\left(1 \mathrm{C}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right) ; 15.73\left(1 \mathrm{C}, \quad C \mathrm{H}_{3} \mathrm{CH}\right) ; 14.37 \quad(1 \mathrm{C}$ $\mathrm{CH}_{3} \mathrm{CH}_{2}$). GC-MS (70 eV) (m / z) (rel. int.): 260 $\left[\mathrm{M}\left({ }^{37} \mathrm{Cl}\right)^{+}, 10\right], 258\left[\mathrm{M}\left({ }^{35} \mathrm{Cl}\right)^{+}, 29\right], 214(5), 167(5), 157$ (25), 155 (69), 141 (19), 130 (38), 129 (12), 128 (100), 111 (10), 75 (8), 57 (12).

$$
\text { 4.2.4.2. }(2 R, 3 S)-6 .[\alpha]_{\mathrm{D}}^{20}=-15.9\left(c \quad 0.74, \mathrm{CHCl}_{3}\right) \text {. }
$$ White solid, mp $57-58^{\circ} \mathrm{C}$. De $>99 \%$, ee $>99 \%$. Analytical and spectroscopic data were identical to those of its enantiomer ($2 S, 3 R$)-6.

4.2.4.3. (2R,3R)-6. Oil; $[\alpha]_{\mathrm{D}}^{20}=-19.9\left(c 1.0, \mathrm{CHCl}_{3}\right)$. $\mathrm{De}=73 \%$, $\mathrm{ee}_{(2 R, 3 R)}=82 \%$, $\mathrm{ee}_{(2 S, 3 R)}=93 \%$. IR (neat): 3700-3200, 3099, 3073, 2983, 2937, 2874, 1736, 1595, 1582, 1490, 1447, 1381, 1282, 1239, 1150, 1093, 1076, 1022, $940,826 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 7.22-7.20 (m, 2 H , aromatic protons); 6.87-6.85 (m, 2 H , aromatic protons); 4.64-4.59 (qd, $J=6.42$ and 3.01 Hz , $1 \mathrm{H}, \mathrm{CHCH}_{3}$); 4.40-4.39 (d, $J=3.01 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHOH}$); 4.33-4.24 (m, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}$); 3.30-3.15 (br s, $1 \mathrm{H}, \mathrm{OH}$: exchanges with $\mathrm{D}_{2} \mathrm{O}$); $1.32-1.31(\mathrm{~d}, J=6.41 \mathrm{~Hz}, 3 \mathrm{H}$,
$\left.\mathrm{CH}_{3} \mathrm{CH}\right) ; 1.32-1.29\left(\mathrm{t}, \mathrm{J}=7.14 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2}\right) .{ }^{13} \mathrm{C}$ NMR ($76 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 172.35(1 \mathrm{C}, \mathrm{CO}) ; 156.22$ (1C, aromatic carbon); 129.70 (2C, aromatic carbons); 126.62 (1C, aromatic carbon); 117.82 (2C, aromatic carbons); $76.25\left(1 \mathrm{C}, \mathrm{CHCH}_{3}\right) ; 72.96(1 \mathrm{C}, \mathrm{CHOH}) ; 62.41$ $\left(1 \mathrm{C}, \quad \mathrm{CH}_{2} \mathrm{CH}_{3}\right) ; \quad 14.74 \quad\left(1 \mathrm{C}, \quad \mathrm{CH}_{3} \mathrm{CH}\right) ; 14.45 \quad(1 \mathrm{C}$, $\mathrm{CH}_{3} \mathrm{CH}_{2}$). GC-MS (70 eV) (m/z) (rel. int.): 260 $\left[\mathrm{M}\left({ }^{37} \mathrm{Cl}\right)^{+}, 10\right], 258\left[\mathrm{M}\left({ }^{35} \mathrm{Cl}\right)^{+}, 28\right], 167(4), 157(26), 155$ (70), 130 (40), 129 (12), 128 (100), 111 (10), 75 (7), 57 (12).

4.2.5. Preparation of 2-(4-chlorophenoxy)-3-hydroxybu-

 tanoic acid 3: general procedure. To $1(1.357 \mathrm{mmol})$ in THF (18 mL) a solution of $\mathrm{KOH}(152 \mathrm{mg}, 2.713 \mathrm{mmol}$, in 6 mL water) was added. The resulting mixture was stirred at room temperature for 1 h . Reaction progress was monitored by GC analysis. Then, THF was removed under reduced pressure and the alkaline reaction mixture was washed three times with ethyl ether, acidified with 2 N HCl and extracted three times with ethyl ether. The second extracts were combined and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was evaporated under reduced pressure and a colourless oil was obtained. The crude product was purified by crystallization (chloroform/hexane).4.2.5.1. (2S,3S)-3. Yield $59 \% ;[\alpha]_{\mathrm{D}}^{20}=-41.5$ (c 0.56 , $\left.\mathrm{CH}_{3} \mathrm{OH}\right)$. $\quad \mathrm{Mp} \quad 128.2-129.4^{\circ} \mathrm{C} \quad\left(\mathrm{CHCl}_{3} /\right.$ hexane $)$. $\mathrm{De}>99 \%$. IR (KBr): 3700-3200, 3035, 2985, 2937, 2818, 1717, 1594, 1586, 1494, 1460, 1374, 1346, 1274, 1233, 1176, 1146, 1106, 1082, 1058, 1010, 970, $827 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta 7.26-7.23$ $(\mathrm{m}, 2 \mathrm{H}$, aromatic protons); 6.93-6.90 $(\mathrm{m}, 2 \mathrm{H}$, aromatic protons); 5.10-4.91 (br s, $2 \mathrm{H}, \mathrm{COOH}$ and OH : exchange with $\left.\quad \mathrm{D}_{2} \mathrm{O}\right) ; \quad 4.61-4.59 \quad(\mathrm{~d}, \quad J=4.25 \mathrm{~Hz}, \quad 1 \mathrm{H}$, $\mathrm{CHOC}_{6} \mathrm{H}_{4} \mathrm{Cl}$); 4.25-4.18 (qd, $J=6.45$ and 4.25 Hz , $1 \mathrm{H}, \quad \mathrm{CHOH}) ; \quad 1.34-1.31 \quad(\mathrm{~d}, \quad J=6.45 \mathrm{~Hz}, \quad 3 \mathrm{H}$, $\mathrm{CH}_{3} \mathrm{CHOH}$). ${ }^{13} \mathrm{C}$ NMR ($76 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta 171.75$ (1C, CO); 157.15 (1C, aromatic carbon); 129.15 (2C, aromatic carbons); 126.26 (1C, aromatic carbon); 116.71 (2C, aromatic carbons); $81.21\left(1 \mathrm{C}, \mathrm{CHOC}_{6} \mathrm{H}_{4} \mathrm{Cl}\right)$ $67.90(1 \mathrm{C}, C \mathrm{HOH}) ; 17.27\left(1 \mathrm{C}, \mathrm{CH}_{3} \mathrm{CHOH}\right)$. Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{ClO}_{4}: \mathrm{C}, 52.07 ; \mathrm{H}, 4.81$. Found: C, 52.05; H, 4.84.
4.2.5.2. (2R,3R)-3. Yield $60 \% ;[\alpha]_{\mathrm{D}}^{20}=+41.8$ (c 0.46, $\left.\mathrm{CH}_{3} \mathrm{OH}\right)$. $\mathrm{Mp} \quad 127.3-128.5^{\circ} \mathrm{C} \quad\left(\mathrm{CHCl}_{3} /\right.$ hexane $)$. $\mathrm{De}>99 \%$. Analytical and spectroscopic data were identical to those of its enantiomer $(2 S, 3 S)$-3.
4.2.5.3. (2S,3R)-3. Quantitative yield. Oil. $[\alpha]_{\mathrm{D}}^{20}=-12.4\left(c \quad 1.0, \mathrm{CHCl}_{3}\right)$. D.e. $>99 \%$ IR (neat): $3700-3200,3014,2926,2855,1732,1596,1585,1490$, 1456, 1407, 1380, 1281, 1236, 1173, 1139, 1089, 1075, $1009,879,824 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $7.24-7.21$ (m, 2H, aromatic protons); 6.83-6.80 (m, 2 H , aromatic protons); $5.70-5.00$ (br s, $2 \mathrm{H}, \mathrm{COOH}$ and OH : exchange with $\mathrm{D}_{2} \mathrm{O}$); 4.48-4.47 (d, $\left.J=3.58 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHOC} \mathrm{CH}_{4} \mathrm{Cl}\right) ; 4.37-4.29(\mathrm{qd}, J=6.33$ and $3.58 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} H \mathrm{OH}) ; 1.38-1.36(\mathrm{~d}, J=6.33 \mathrm{~Hz}$, $\left.3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CHOH}\right) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $173.38(1 \mathrm{C}, \mathrm{CO}) ; 156.04$ (1C, aromatic carbon); 129.61 (2C, aromatic carbons); 127.33 (1 C , aromatic carbon); 116.57 (2C, aromatic carbons); $80.33\left(1 \mathrm{C}, \mathrm{CHOC}_{6} \mathrm{H}_{4} \mathrm{Cl}\right)$
$68.54(1 \mathrm{C}, \mathrm{CHOH}) ; 19.09\left(1 \mathrm{C}, \mathrm{CH}_{3} \mathrm{CHOH}\right)$. Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{ClO}_{4}$: C, $52.07 ; \mathrm{H}, 4.81$. Found: C, 52.09 ; H, 4.85.
4.2.5.4. (2R,3S)-3. Quantitative yield. $[\alpha]_{\mathrm{D}}^{20}=+12.4$ (c $\left.1.0, \mathrm{CHCl}_{3}\right) . \mathrm{Mp} 105-106{ }^{\circ} \mathrm{C}\left(\mathrm{CHCl}_{3} /\right.$ hexane $)$. Analytical and spectroscopic data were identical to those ones of its enantiomer $(2 S, 3 R)-\mathbf{3}$.

4.3. X-ray crystallography

To establish the absolute configuration at $\mathrm{C}(7)$ and $\mathrm{C}(9)$ (Figs. 3 and 4) in an unambiguous manner, suitable crystals were grown and subjected to a single crystal X-ray analysis, using a Nonius Kappa CCD area detector diffractometer equipped with a fine focus sealed graphite-monochromated $\mathrm{Mo} \mathrm{K} \alpha$ radiation $\quad(\lambda=$ $0.71073 \AA$). Data for ($2 S, 3 S$)-2-(4-chlorophenoxy)-3hydroxybutanoic acid 3 and $(2 R, 3 R)$-2-(4-chlorophen-oxy)-3-hydroxybutanoic acid $\mathbf{3}$ were collected at 293(2) K. Data collection was carried out with the program collect. ${ }^{38}$ Cell refinement and data reduction were carried out with the program Denzo. ${ }^{39}$ The structures were solved by the direct methods procedure of SIR $97,{ }^{40}$ while the refinement processes were carried on full matrix least squares technique using SHELXL-97. ${ }^{41}$ Detailed crystal data and geometrical parameters were deposited in the Supporting Information (cif files). ${ }^{42}$ The asymmetric units of $(2 S, 3 S)-\mathbf{3}$ and $(2 R, 3 R)$ - $\mathbf{3}$ with the atomic numbering schemes are depicted in Figures 3 and 4.
4.3.1. Pertinent crystallographic data for $(2 S, 3 S)$ 3. $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{ClO}_{4}, \mathrm{M} r=230.64 \mathrm{~g} \mathrm{~mol}^{-1}$, orthorhombic, space group: $P 2_{1} 2_{1} 2_{1}, \quad a=5.2267(1), \quad b=6.7172(1)$, $c=30.2782(7) \AA$, cell volume $=1063.03(4) \AA^{3}, Z=4$, $T=293(2) \mathrm{K}, \quad \rho_{\mathrm{c}}=1.441 \mathrm{~g} \mathrm{~cm}^{-3}, \quad \mu=0.350 \mathrm{~mm}^{-1}$, Θ range $=3.96-27.51^{\circ}, \quad h k l \quad$ indices: $\quad-6 \leqslant h \leqslant 6$, $-8 \leqslant k \leqslant 8, \quad-38 \leqslant l \leqslant 39, \quad$ reflections \quad (measured) $=2334$, reflections $($ unique $)=2334$, reflections (unique $\left[F_{o}>2 \sigma\left\{\left|F_{o}\right|\right\}\right]$): 1934, $R_{\mathrm{int}}=0$, 180 parameters, $R_{1} / w \mathrm{R}_{2}$ (all data): 0.0477/0.0892, $R_{1} / w \mathrm{R}_{2}(I>2 \sigma(I))$: $0.0346 / 0.0826$, Flack parameter $=-0.06(7)$, largest diff. peak/hole: $0.169 /-0.154$ e \AA^{-3}.
4.3.2. Pertinent crystallographic data for $(2 R, 3 R)$ 3. $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{ClO}_{4}, \mathrm{M} r=230.64 \mathrm{~g} \mathrm{~mol}^{-1}$, orthorhombic, space group: $P 2_{1} 2_{1} 2_{1}, \quad a=5.2273(1), \quad b=6.7201(1)$, $c=30.2906(7) \AA$, cell volume $=1064.05(3) \AA^{3}, Z=4$, $T=293(2) \mathrm{K}, \quad \rho_{\mathrm{c}}=1.440 \mathrm{~g} \mathrm{~cm}^{-3}, \quad \mu=0.350 \mathrm{~mm}^{-1}$, Θ range $=3.11^{\circ}-27.47^{\circ}, \quad h k l \quad$ indices: $\quad-6 \leqslant h \leqslant 6$, $-8 \leqslant k \leqslant 8, \quad-38 \leqslant l \leqslant 39, \quad$ reflections \quad (measured $)=2390$, reflections $($ unique $)=2390$, reflections (unique $\left[F_{o}>2 \sigma\left\{\left|F_{o}\right|\right\}\right]$): 2157, $R_{\mathrm{int}}=0,180$ parameters, $R_{1} / w R_{2}$ (all data): 0.0405/0.0923, $R_{1} / w R_{2}(I>2 \sigma(I))$: $0.0347 / 0.0888$, Flack parameter $=0.01(8)$, largest diff. peak/hole: $0.185 /-0.179$ e \AA^{-3}.

Acknowledgements

Work carried out under the framework of the National Project 'Progettazione, Sintesi e Valutazione Biologica
di Nuovi Farmaci Cardiovascolari' supported by the Ministero dell'Istruzione, dell'Università e della Ricerca (MIUR, Rome). Thanks are also due to the University of Bari, CNR-Istituto di Chimica dei Composti Organo-Metallici-ICCOM/Sezione di Bari (Italy) and to Dr. F. M. Milazzo and Dr. A. F. Sciarroni of Sigma tau Industrie Farmaceutiche (Ricerca e Sviluppo-Pomezia, Italy) for biological tests performed on the four stereoisomers of 3 .

References

1. Berger, J.; Moller, D. E. Ann. Rev. Med. 2002, 53, 409-435.
2. Staels, B.; Dallongeville, J.; Auwerx, J.; Schoonjans, K.; Leitersdorf, E.; Fruchart, J. C. Circulation 1998, 98, 20882093.
3. Sgro, C.; Escousse, A. Therapie 1991, 46, 351-354.
4. Gariot, P.; Barrat, E.; Mejean, L.; Pointel, J.; Drouin, P.; Debry, G. Arch. Toxicol. 1983, 53, 151-163.
5. Angelin, B.; Einarsson, K.; Leijd, B. Eur. J. Clin. Invest. 1984, 14, 73-78.
6. Evans, M.; Rees, A. Drug Safety 2002, 25, 649-663.
7. Conte-Camerino, D.; Tortorella, V.; Ferrannini, E.; Bryant, S. H. Arch. Toxicol. 1984, 7, 482-484.
8. Mastaglia, F. L. Drugs 1982, 24, 304-321.
9. Margarian, G. J.; Lucas, L. M.; Colley, C. Arch. Intern. Med. 1991, 151, 1873-1874.
10. Lavarenne, J.; Poinas-Caillaud, H. Therapie 1991, 46, 347-349.
11. London, S. F.; Gross, K. F.; Ringel, S. P. Neurology 1991, 41, 1159-1160.
12. Reddy, J. K.; Azarnoff, D. C.; Hignite, C. E. Nature 1980, 283, 397-398.
13. Vouillamoz, D.; Schaller, M. D.; Bianchi, L.; Chaubert, P.; Reinhart, W.; Armstrong, D.; Thorens, J.; Blum, A. L. Lancet 1991, 338, 581.
14. Tikkanen, M. Curr. Opin. Lipidol. 1992, 3, 29-33.
15. Zimetbaum, P.; Frishman, W.; Kahn, S. J. Clin. Pharmacol. 1991, 31, 25-37.
16. Feller, D. R.; Kamanna, V. S.; Newman, H. A. I.; Romstedt, K. J.; Witiak, D. T.; Bettoni, G.; Bryant, S. H.; Conte-Camerino, D.; Loiodice, F.; Tortorella, V. J. Med. Chem. 1987, 30, 1265-1267.
17. Bettoni, G.; Loiodice, F.; Tortorella, V.; Conte-Camerino, D.; Mambrini, M.; Ferrannini, E.; Bryant, S. H. J. Med. Chem. 1987, 30, 1267-1270.
18. Esbenshade, T. A.; Kamanna, V. S.; Newman, H. A. I.; Tortorella, V.; Witiak, D. T.; Feller, D. R. Biochem. Pharmacol. 1990, 40, 1263-1274.
19. Inomata, N.; Yoshida, H.; Aoki, Y.; Tsunoda, M.; Yamamoto, M. Tohoku J. Exp. Med. 1991, 165, 171-182.
20. Ciolek, E.; Dauca, M. Biol. Cell 1991, 71, 313-320.
21. Ferorelli, S.; Franchini, C.; Loiodice, F.; Perrone, M. G.; Scilimati, A.; Sinicropi, M. S.; Tortorella, P. Tetrahedron: Asymmetry 2001, 12, 853-862, and references cited therein.
22. Ferorelli, S.; Loiodice, F.; Tortorella, V.; Amoroso, R.; Bettoni, G.; Conte-Camerino, D.; DeLuca, A. Farmaco 1997, 52, 367-374, and references cited therein.
23. Rangwala, S. M.; O'Brien, M. L.; Tortorella, V.; Longo, A.; Loiodice, F.; Noonan, D. J.; Feller, D. R. Chirality 1997, 9, 37-47.
24. Ferorelli, S.; Loiodice, F.; Tortorella, V.; ConteCamerino, D.; DeLuca, A. Farmaco 2001, 56, 239246.
25. Carbonara, G.; Fracchiolla, G.; Loiodice, F.; Tortorella, P.; Conte-Camerino, D.; DeLuca, A.; Liantonio, A. Farmaco 2001, 56, 749-754.
26. Liantonio, A.; Accardi, A.; Carbonara, G.; Fracchiolla, G.; Loiodice, F.; Tortorella, P.; Traverso, S.; Guida, P.; Pierno, S.; DeLuca, A.; Conte-Camerino, D.; Push, M. Mol. Pharmacol. 2002, 62, 265-272.
27. Perrone, M. G.; Santandrea, E.; Dell'Uomo, N.; Giannessi, F.; Milazzo, F. M.; Sciarroni, A. F.; Scilimati, A.; Tortorella, V. Eur. J. Med. Chem. 2005, 40, 143154.
28. Perrone, M. G.; Santandrea, E.; Scilimati, A.; Tortorella, V.; Capitelli, F.; Bertolasi, V. Tetrahedron: Asymmetry 2004, 15, 3501-3510.
29. Perrone, M. G.; Santandrea, E.; Scilimati, A.; Syldatk, C.; Tortorella, V.; Capitelli, F.; Bertolasi, V. Tetrahedron: Asymmetry 2004, 15, 3511-3517.
30. Hintzer, K.; Koppenhoefer, B.; Schurig, V. J. Org. Chem. 1982, 47, 3850-3854.
31. Brewster, P.; Hiron, F.; Hughes, E. D.; Ingold, C. K.; Rao, P. A. Nature 1950, 166, 179-180.
32. It has been proved that racemization does not exceed 2.7% in the conversion (with retention of configuration) of 2amino carboxylic acids to 2-chloro carboxylic acids: Schurig, V.; Koppenhoefer, B.; Buerkle, W. Angew. Chem., Int. Ed. Engl. 1978, 90, 993-995.
33. Koppenhoefer, B.; Weber, R.; Schurig, V. Synthesis 1982, 316-318.
34. Winstein, S.; Lucas, H. J. J. Am. Chem. Soc. 1939, 61, 1576-1581.
35. Ketola, M.; Lyytinen, M. R.; Hotokka, M.; Pihlaja, K. Acta Chem. Scand. Sez B: Org. Chem. Biochem. 1978, B32, 743-748.
36. Akita, H.; Todoroki, R.; Endo, H.; Ikari, Y.; Oishi, T. Synthesis 1993, 513-516.
37. Amoroux, R.; Gerin, B.; Chastrette, M. Tetrahedron 1985, 41, 5321-5324.
38. Nonius B. V. (COLLECT). Nonius, 1998. KappaCCD Server Software; Delft: The Netherland.
39. Otwinowski, Z.; Minor, W. In Methods in Enzymology, Macromolecular Crystallography. Part A; Carter, C. W., Sweet, R. M., Eds.; Academic: University of Texas, Southwestern Medical Centre at Dallas, HKL DENZO and Scalepack, USA, 1997; Vol. 276, p 307.
40. Altomare, A.; Burla, M. C.; Camalli, M.; Cascarano, G. L.; Giacovazzo, C.; Guagliardi, A.; Moliterni, A. G. G.; Polidori, G.; Spagna, R. J. Appl. Crystallogr. 1999, 32, 115-119.
41. Sheldrick, G. M. SHELXL-97. Program for the Refinement of Crystal Structures. University of Gottingen: Germany, 1997.
42. Crystallographic data (excluding structure factors) for the structures here reported have been deposited with the Cambridge Crystallographic Data Centre as supplementary publications Nos. CCDC-261641-241642, respectively, for ($2 S, 3 S$)-2-(4-chlorophenoxy)-3-hydroxybutanoic acid 3 and ($2 R, 3 R$)-2-(4-chlorophenoxy)-3hydroxybutanoic acid 3. Copies of available material can be obtained, free of charge, on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK (fax: +44 1223 336033 or email: deposit@ccdc.cam.ac.uk).

[^0]: * Corresponding author. E-mail: ascilimati@farmchim.uniba.it

